Ep76: Ilias Diakonikolas

Please accept marketing cookies to listen to this episode.

In this episode of ACM ByteCast, Bruke Kifle hosts 2024 ACM Grace Murray Hopper Award recipient Ilias Diakonikolas, Professor at the University of Wisconsin, Madison, where he researches the algorithmic foundations of machine learning and statistics. Ilias received the prestigious award for developing the first efficient algorithms for high-dimensional statistical tasks that are also robust, meaning they perform well even when the data significantly deviates from ideal modelling assumptions. His other honors and recognitions include a Sloan Fellowship, the NSF CAREER Award, the best paper award at NeurIPS 2019, and the IBM Research Pat Goldberg Best Paper Award. He authored a textbook titled Algorithmic High-Dimensional Robust Statistics.

In the interview, Ilias describes his early love of math as a student in Greece, which led him on a research journey in theoretical statistics and algorithms at Columbia University and, later, at UC Berkeley. He defines “robust statistics” and how it aids in detecting “data poisoning.” Ilias and Bruke explore statistical v. computational efficiency, the practical applications of this research in machine learning and trustworthy AI, and future directions in algorithmic design. Ilias also offers valuable advice to future researchers.

Download the show notes.

Download the transcript.